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Current farming practice Our Vision

The problem Solution
Vegetation is one of our primary sources of food. Crops grow in response to We envision a future in farming practices where farmers use digital twins
external conditions around them. A change in pH level, for instance, can influence to guide them in their decision-making. A digital twin is defined as a digital
their growth. We rely on farmers to grow and harvest them. Modern farming replica of a physical counterpart. It mimics the behavior and appearance of
practices like vertical farming allow crops to grow in controlled environments, an object, such as crops. Farmers first apply experimental decisions to the
enabling farmers to manipulate external conditions such as pH levels. However, digital twin. Then, the digital twin mimics the crop’s response based on those
their decisions might not always be favorable to the crops. Applying too little or too decisions.As aresult,farmersreceive insights and use themto make informed
much configuration can result in healthy or unhealthy crops. Crops can become decisions on their real crops. This leads to no resource wastage, healthier
damaged or experience stagnated growth, leading to reduced yields and resource crops, and higher vyields. It redefines modern farming practices to be more 1}/ - | =
Actual CI'Op wastage. It's risky, inefficient, and unsustainable. sustainable and efficient, ultimately benefiting mankind and the planet. Dlgltal Twir Actual Crop

SUSTAINABLE ™ s

Promotes promanaBE (Gt AL S Farmers can make informed agricultural decisions

promotes SUStainable ana ™
Efficient farming practices Q» ﬂ

INDUSTRY, ‘I RESPONSIBLE
INNGVATION, AND CONSUMPTION
S { INFRASTRUCTURE AND PRODUCTION

‘\\- N
| ) \
e
b
_
g

The Technological Impact

Entrepreneurial Opportunities for Developers

Our Foundational Contribution

Developing a Data Collection Platform Investigating Segmentation Architectures Trained Solely for the Plant Class

A small replica of a hydroponic vertical farm with cameras and sensors to collect plant growth data. Correct segmentation of plant objects positively affects succeeding phases such as 3D modeling.
YOLOv8 and Detectron2 are the initial architectures chosen for comparison.
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Plants grow on data are captured with fewer ® High GPU RAM
top of rotating lazy External conditions periodically using Box AP/50 0.850 0.870 0.830 0.840 0.830 0.740 epochs consumption
Plant images are susans to capture (e.g., pH level) are Arduino and C, and Mask AP/50 0.840 0.880 0.830 0.800 0.830 0.730 © Lowdiskstorage = with larger sets
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’ Train Time 1.400 hrs 1.590 hrs 1.570 hrs 1.920 hrs 0.870 hrs 2.020 hrs with smaller
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The dataset comprise over 1,000 diverse plant images. Epoch sizes are 100, 75, and 50 (Tests A to C). Batch sizes are 16, 8, and 3. Worker usage affected by fewer
s s s counts are 8, 6, and 4. The initial and final learning rates are constant across all tests, at 0.01 and 0.0071, respectively.
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Proposing Unified Loss Function for Model Training

Three loss functions are explored: Mean Squared Error, Temporal Consistency, and one that combines both. The unified loss Day 15
function showed slightly better training and testing results than the other two in predicting images of plant appearance.
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MSE 0.0001 0.0326 0.0001

| Ground truth  MSE model

Training phase . Testing phase
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The dataset contains 64 plant growth sequences TC 0.0001 0.0000 0.0001 Predictio
captured at 12-hour intervals. The plant used is lettuce,
but the model is scalable to other plant types. TV 1481984 239.4765 141.8375 L J L J L J L J
Metrics are Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural TC mOdel Unlfled mOdE E§p¥h1r§;35 - N - H
Similarity Index (SSIM), Temporal Consistency (TC), and Total Variation (TV). (MSE+TC)
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Segmentation - Resize = Normalization the past 35 images. The same configuration of Day 15.5
o . . . external conditions from the dataset is used to Point clou
- Sequence Length Standardization CACtual lmage> Compare <Pred|Cted Image> generate these predictions. Window size is 30.
- Augmentation from the dataset w/ metrics by the model Stride is 1.
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Unified point clou

Day 15.5

Meshed point clou

Investigating Computer Vision Techniques to Create a 3D Model of the images of 30 modsling shown use stereoimages fiom the dataset.
Plant from Constrained Stereo Images

The challenge is to transform 2D stereo images, captured around an object at 90-degree horizontal rotations, into a 3D model.
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For researchers who believe in the vision and wish to contribute to its pursuit:
Point Cloud € Point Cloud
Refinement Generation

Plant's future appearance
3D model

Mesh
Generation

Point Cloud

Continue collecting data. Grow more plants. Expand to other plant types, and grow them under different external conditions.
W ¢ Registration

Explore data collection techniques that capture top and bottom plant views and yield denser point clouds.

Explore deep learning techniques that can address weaknesses found in current models, such as blurriness in predictions.
Expand the 3D modeling methodology to include quantitative evaluation.

Implement an automatic point cloud merging technique in 3D modeling to replace the current manual process.

Continue future R&D stages, such as developing augmented reality experiences to view 3D plant models in physical space.

The techniques mentioned use OpenCV and Open3D libraries in Python. Point cloud generation uses 3D reprojection. Point cloud refinement uses the .transform function with statistical and radius outlier
removal. Point cloud registration uses the translate, .rotate, .scale, and transform functions. Mesh generation uses the Ball Pivoting Algorithm.
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