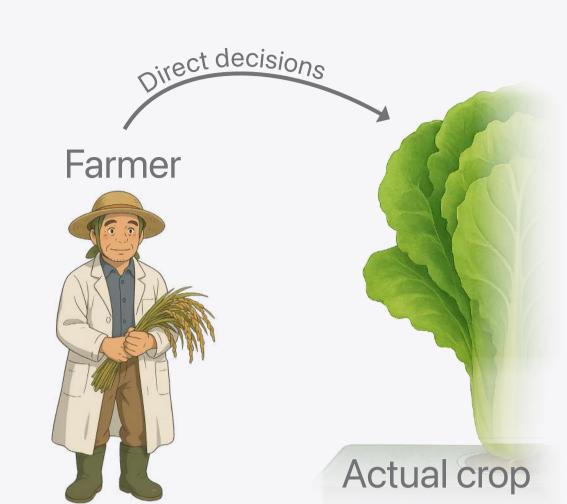


Investigating Deep Learning and Computer Vision for Predicting and Simulating Plant Growth Structures: Laying the Groundwork for Digital Twins in Agriculture

John Ivan T. Diaz, Craig Joseph B. Goc-ong, Kaye Louise A. Manilong, Alvin Joseph S. Macapagal, Philip Virgil B. Astillo* Department of Computer Engineering, University of San Carlos



2 ZERO HUNGER

Current farming practice

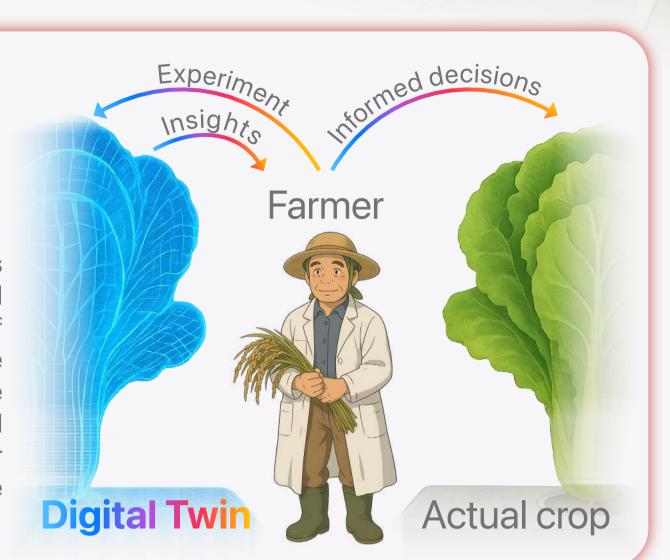
The problem

Vegetation is one of our primary sources of food. Crops grow in response to external conditions around them. A change in pH level, for instance, can influence their growth. We rely on farmers to grow and harvest them. Modern farming practices like vertical farming allow crops to grow in controlled environments, enabling farmers to manipulate external conditions such as pH levels. However, their decisions might not always be favorable to the crops. Applying too little or too much configuration can result in healthy or unhealthy crops. Crops can become damaged or experience stagnated growth, leading to reduced yields and resource wastage. It's risky, inefficient, and unsustainable.

Our Vision

Solution

We envision a future in farming practices where farmers use digital twins to guide them in their decision-making. A digital twin is defined as a digital replica of a physical counterpart. It mimics the behavior and appearance of an object, such as crops. Farmers first apply experimental decisions to the digital twin. Then, the digital twin mimics the crop's response based on those decisions. As a result, farmers receive insights and use them to make informed decisions on their real crops. This leads to no resource wastage, healthier crops, and higher yields. It redefines modern farming practices to be more sustainable and efficient, ultimately benefiting mankind and the planet.



Promotes SUSTAINABLE GENALS

INFRASTRUCTURE

Farmers can make informed agricultural decisions

The Technological Impacts

Drives healthier crops and higher yields

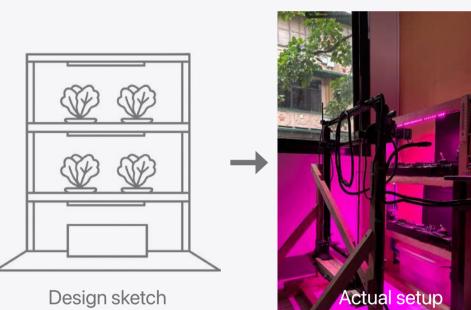
Promotes Sustainable and A Efficient farming practices

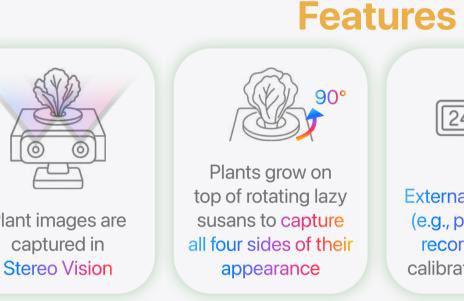
Entrepreneurial Opportunities for Developers

Our Foundational Contributions

Developing a Data Collection Platform

A small replica of a hydroponic vertical farm with cameras and sensors to collect plant growth data.

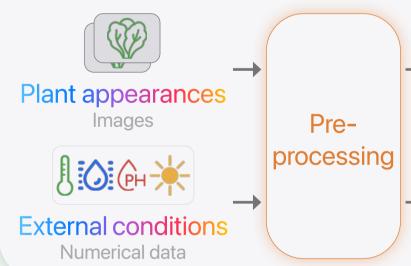


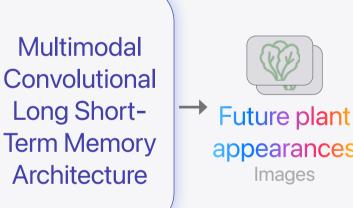


Investigating Multimodal Convolutional Long Short-Term Memory Architecture for Predicting Future Plant Appearance

Multimodal learning

It learns how plants look under a given set of external conditions (e.g., ambient temperature), thus gaining the ability to predict future plant appearances based on those conditions.



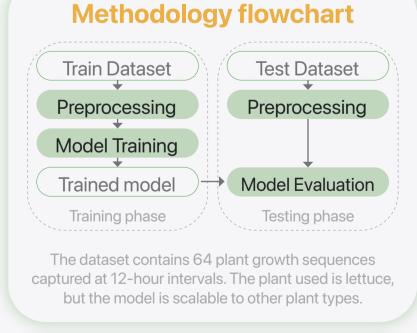


Model architecture Time Distributed ConvLSTMs Reshape Normalization Lambda

Concatenation **3D Convolution**

Proposing Unified Loss Function for Model Training

Three loss functions are explored: Mean Squared Error, Temporal Consistency, and one that combines both. The unified loss function showed slightly better training and testing results than the other two in predicting images of plant appearance.



Preprocessing Segmentation → Resize → Normalization → Sequence Length Standardization → Augmentation

Test results ★ Better result

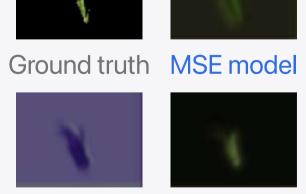
Unified model Metric MSE model TC model (MSE+TC) MSE 0.0001 ★ 0.0326 0.0001 ★ **PSNR** 45.1848 dB 14.8740 dB 46.9794 dB 🛨 0.9633 0.0162 0.9692 0.0001 0.0000 🛨 0.0001 141.8375

Similarity Index (SSIM), Temporal Consistency (TC), and Total Variation (TV). **Evaluation** Predicted image

Metrics are Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural

from the dataset / w/ metrics \ process by the model

Sample image

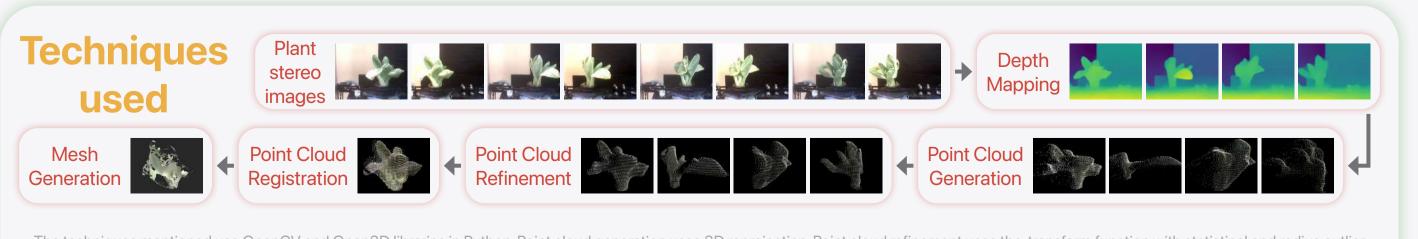


TC model Unified model (MSE+TC)

Predicting the 10th future time step based on the past 35 images. The same configuration of external conditions from the dataset is used to generate these predictions. Window size is 30. Stride is 1.

Investigating Computer Vision Techniques to Create a 3D Model of the Plant from Constrained Stereo Images

The challenge is to transform 2D stereo images, captured around an object at 90-degree horizontal rotations, into a 3D model.



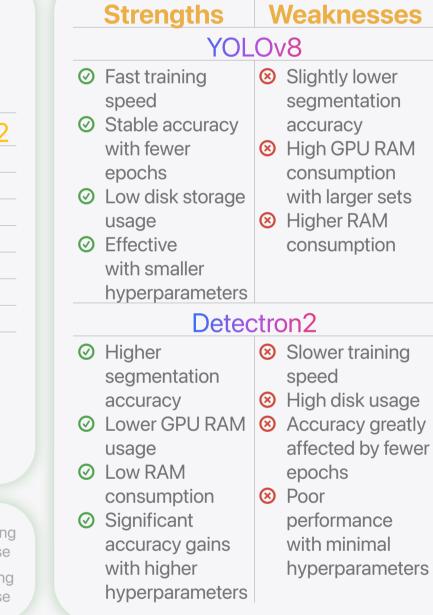
The techniques mentioned use OpenCV and Open3D libraries in Python. Point cloud generation uses 3D reprojection. Point cloud refinement uses the .transform function with statistical and radius outlier removal. Point cloud registration uses the .translate, .rotate, .scale, and .transform functions. Mesh generation uses the Ball Pivoting Algorithm.

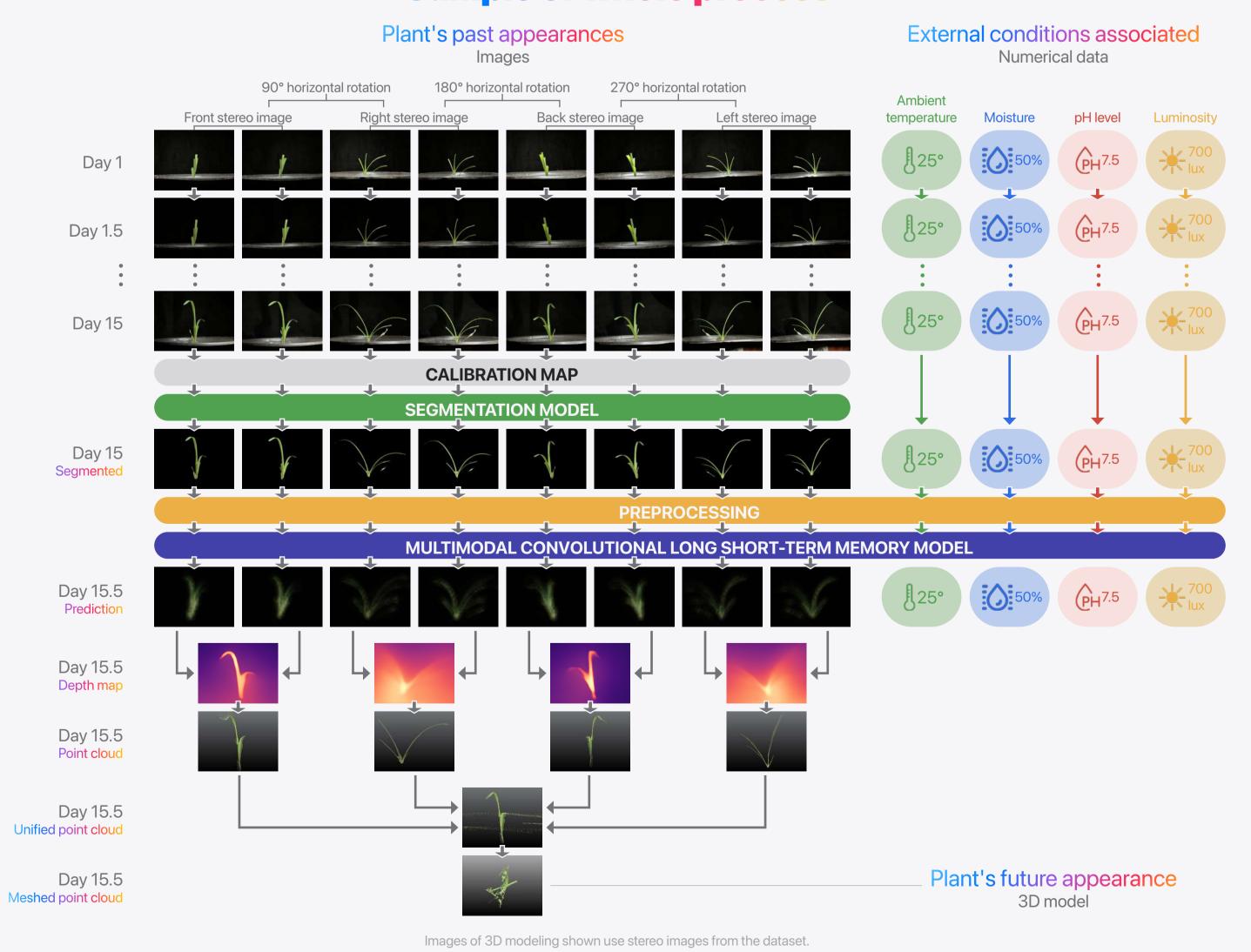
Investigating Segmentation Architectures Trained Solely for the Plant Class

Correct segmentation of plant objects positively affects succeeding phases such as 3D modeling. YOLOv8 and Detectron2 are the initial architectures chosen for comparison.

Decreasing hyperparameters The dataset comprise over 1,000 diverse plant images. Epoch sizes are 100, 75, and 50 (Tests A to C). Batch sizes are 16, 8, and 3. Worker counts are 8, 6, and 4. The initial and final learning rates are constant across all tests, at 0.01 and 0.001, respectively.

hodology	Train Dataset → Annotation → Model Training → Trained model Training phase
owchart	Test Dataset → Annotation → Model Evaluation Testing phase





Recommendations

For researchers who believe in the vision and wish to contribute to its pursuit:

- Ontinue collecting data. Grow more plants. Expand to other plant types, and grow them under different external conditions.
- © Explore data collection techniques that capture top and bottom plant views and yield denser point clouds.
- © Explore deep learning techniques that can address weaknesses found in current models, such as blurriness in predictions.

Ontinue future R&D stages, such as developing augmented reality experiences to view 3D plant models in physical space.

② Expand the 3D modeling methodology to include quantitative evaluation. ② Implement an automatic point cloud merging technique in 3D modeling to replace the current manual process.