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A deep learning model that predicts 
future appearances of crops with respect 

to external conditions around them
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Imaging setup

Front stereo image

Back stereo image

Left stereo image Right stereo image



Current farming practice
The problem

Investigating Deep Learning and Computer Vision 
for Predicting and Simulating Plant Growth Structures: 
Laying the Groundwork for Digital Twins in Agriculture

Vegetation is one of our primary sources of food. Crops grow in response to 
external conditions around them. A change in pH level, for instance, can influence 
their growth. We rely on farmers to grow and harvest them. Modern farming 
practices like vertical farming allow crops to grow in controlled environments, 
enabling farmers to manipulate external conditions such as pH levels. However, 
their decisions might not always be favorable to the crops. Applying too little or too 
much configuration can result in healthy or unhealthy crops. Crops can become 
damaged or experience stagnated growth, leading to reduced yields and resource 
wastage. It’s risky, inefficient, and unsustainable.

John Ivan T. Diaz, Craig Joseph B. Goc-ong, Kaye Louise A. Manilong, Alvin Joseph S. Macapagal, Philip Virgil B. Astillo*
Department of Computer Engineering, University of San Carlos

We envision a future in farming practices where farmers use digital twins 
to guide them in their decision-making. A digital twin is defined as a digital 
replica of a physical counterpart. It mimics the behavior and appearance of 
an object, such as crops. Farmers first apply experimental decisions to the 
digital twin. Then, the digital twin mimics the crop’s response based on those 
decisions. As a result, farmers receive insights and use them to make informed 
decisions on their real crops. This leads to no resource wastage, healthier 
crops, and higher yields. It redefines modern farming practices to be more 
sustainable and efficient, ultimately benefiting mankind and the planet.

Our Vision
Solution

The Technological Impacts

Our Foundational Contributions

Features

A small replica of a hydroponic vertical farm with cameras and sensors to collect plant growth data.

Promotes
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Developing a Data Collection Platform

Plant images are 
captured in 

Stereo Vision

Images and sensor 
data are captured 
periodically using 

Arduino and C, and 
managed using 

Python and MySQL

Plants grow on 
top of rotating lazy 
susans to capture 

all four sides of their 
appearance

Investigating Segmentation Architectures Trained Solely for the Plant Class
Correct segmentation of plant objects positively affects succeeding phases such as 3D modeling.

YOLOv8 and Detectron2 are the initial architectures chosen for comparison.

Farmers can make informed agricultural decisions

Drives healthier crops and higher yields Entrepreneurial Opportunities for Developers

Promotes Sustainable and 

Efficient farming practices

Metric Test A Test B Test C
YOLOv8 Detectron2 YOLOv8 Detectron2 YOLOv8 Detectron2

Box AP/50 0.850 0.870 ★ 0.830 0.840 ★ 0.830 ★ 0.740
Mask AP/50 0.840 0.880 ★ 0.830 ★ 0.800 0.830 ★ 0.730
Box Loss 0.400 0.180 ★ 0.360 0.190 ★ 0.390 0.390
Mask Loss 0.800 0.110 ★ 0.660 0.110 ★ 0.810 0.150 ★
Train Time 1.400 hrs ★ 1.590 hrs 1.570 hrs ★ 1.920 hrs 0.870 hrs ★ 2.020 hrs
System RAM 5.500 GB 4.600 GB ★ 5.900 GB 3.300 GB ★ 4.900 GB 4.000 GB ★
GPU RAM 9.200 GB 3.500 GB ★ 9.200 GB 3.300 GB ★ 5.200 GB 2.500 GB ★
Disk Usage 33.100 GB ★ 35.900 GB 33.300 GB 33.200 GB ★ 33.200 GB ★ 35.900 GB

Train results
★ Better result

The dataset comprise over 1,000 diverse plant images. Epoch sizes are 100, 75, and 50 (Tests A to C). Batch sizes are 16, 8, and 3. Worker 
counts are 8, 6, and 4. The initial and final learning rates are constant across all tests, at 0.01 and 0.001, respectively.

Decreasing hyperparameters

Strengths Weaknesses
YOLOv8

Fast training 
speed
Stable accuracy 
with fewer 
epochs
Low disk storage 
usage
Effective 
with smaller 
hyperparameters

Slightly lower 
segmentation 
accuracy
High GPU RAM 
consumption 
with larger sets
Higher RAM 
consumption

Detectron2
Higher 
segmentation 
accuracy
Lower GPU RAM 
usage
Low RAM 
consumption
Significant 
accuracy gains 
with higher 
hyperparameters

Slower training 
speed
High disk usage
Accuracy greatly 
affected by fewer 
epochs
Poor 
performance 
with minimal 
hyperparameters

⊗

⊗

⊗

⊗

⊗
⊗

⊗

✓⃝

✓⃝

✓⃝

✓⃝

✓⃝

✓⃝

✓⃝

✓⃝
Methodology 

flowchart
AnnotationTrain Dataset

Test Dataset

Model Training

Model Evaluation

Trained model

Annotation

Training 
phase

Testing 
phase

Proposing Unified Loss Function for Model Training
Three loss functions are explored: Mean Squared Error, Temporal Consistency, and one that combines both. The unified loss 

function showed slightly better training and testing results than the other two in predicting images of plant appearance.

★ Better result
Test results

Metrics are Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural 
Similarity Index (SSIM), Temporal Consistency (TC), and Total Variation (TV).

Metric MSE model TC model Unified model 
(MSE+TC)

MSE 0.0001 ★ 0.0326 0.0001 ★

PSNR 45.1848 dB 14.8740 dB 46.9794 dB ★

SSIM 0.9633 0.0162 0.9692 ★

TC 0.0001 0.0000 ★ 0.0001

TV 148.1984 239.4765 141.8375 ★

Predicting the 10th future time step based on 
the past 35 images. The same configuration of 
external conditions from the dataset is used to 
generate these predictions. Window size is 30. 

Stride is 1.

Ground truth MSE model

TC model Unified model 
(MSE+TC)

Sample image

Evaluation 
process

Compare
w/ metrics

Actual image
from the dataset

Predicted image
by the model

Preprocessing pipeline

Methodology flowchart

Preprocessing Preprocessing

Train Dataset

Model Training

Model EvaluationTrained model

Test Dataset

Training phase Testing phase

The dataset contains 64 plant growth sequences 
captured at 12-hour intervals. The plant used is lettuce, 

but the model is scalable to other plant types.

Investigating Computer Vision Techniques to Create a 3D Model of the 
Plant from Constrained Stereo Images

Developing a Multimodal Convolutional Long Short-Term Memory 
Architecture for Predicting Future Plant Appearance

Multimodal learning
It learns how plants look under a given set of external conditions (e.g., 
ambient temperature), thus gaining the ability to predict future plant 

appearances based on those conditions.

Design sketch Actual setup

Model architecture

Plant appearances
Images

External conditions
Numerical data

Future plant 
appearances

Images

ConvLSTMs

Normalization

Time Distributed

Reshape

Lambda

Concatenation

3D Convolution

Pre-
processing

Multimodal 
Convolutional 
Long Short-

Term Memory 
Architecture

Recommendations
For researchers who believe in the vision and wish to contribute to its pursuit:

Continue collecting data. Grow more plants. Expand to other plant types, and grow them under different external conditions.
Explore data collection techniques that capture top and bottom plant views and yield denser point clouds.
Explore deep learning techniques that can address weaknesses found in current models, such as blurriness in predictions.
Expand the 3D modeling methodology to include quantitative evaluation.
Implement an automatic point cloud merging technique in 3D modeling to replace the current manual process.
Continue future R&D stages, such as developing augmented reality experiences to view 3D plant models in physical space.

✓⃝
✓⃝
✓⃝
✓⃝
✓⃝
✓⃝

The challenge is to transform 2D stereo images, captured around an object at 90-degree horizontal rotations, into a 3D model.

Segmentation → Resize → Normalization 
→ Sequence Length Standardization 

→ Augmentation

Preprocessing

Sample of whole process

Front stereo image Right stereo image Left stereo image
Ambient 

temperature Moisture pH level LuminosityBack stereo image

Plant's past appearances
Images

External conditions associated
Numerical data

Plant's future appearance
3D model

90° horizontal rotation 180° horizontal rotation 270° horizontal rotation

CALIBRATION MAP

SEGMENTATION MODEL

PREPROCESSING

MULTIMODAL CONVOLUTIONAL LONG SHORT-TERM MEMORY MODEL

Day 1

Day 1.5

Day 15

Day 15
Segmented

Day 15.5
Prediction

Day 15.5
Depth map

Day 15.5
Point cloud

Day 15.5
Unified point cloud

Day 15.5
Meshed point cloud

... ... ... ... ... ... ... ... ... ... ... ... ...

Techniques 
used

The techniques mentioned use OpenCV and Open3D libraries in Python. Point cloud generation uses 3D reprojection. Point cloud refinement uses the .transform function with statistical and radius outlier 
removal. Point cloud registration uses the .translate, .rotate, .scale, and .transform functions. Mesh generation uses the Ball Pivoting Algorithm.

Depth 
Mapping

Point Cloud 
Generation

Point Cloud 
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Point Cloud 
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images

Mesh 
Generation
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Recent deep learning advancements

Traditional LSTM Convolutional LSTM



Convolutional LSTM



Convolutional LSTMMultimodal



Multimodal learning
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Model architecture
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Evaluation
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Mean Squared Error 

loss function

Model trained with  
Temporal Consistency 

loss function

MSE 
model

TC  
model



Evaluation

MSE 
model

TC  
model

LMSE =
1
N

N

∑
i=1

(xs,L,i − ̂xs,L,i)2 LTC =
1

N(TS − 1)

TS

∑
t=2

N

∑
i=1

[(xs,t,i − xs,t−1,i) − ( ̂xs,t,i − ̂xs,t−1,i)]2



Evaluation

Compare

Actual image 
from the dataset

Day 1

Predicted image 
by the model

Day 1



Evaluation
Metrics

Mean Squared Error 

Peak Signal-to-Noise Ratio 

Structured Similarity Index 

Temporal Consistency 

Total Variation 

Visual inspectionActual image 
from the dataset

Day 1

Predicted image 
by the model

Day 1



Evaluation
Quantitative metrics

Bad Good

Greater than 0 MSE 0

Below 40 dB or above 50 dB PSNR Within 40-50 dB

Lesser than 1 SSIM 1

Greater than 0 TC 0

Greater than 0 TV 0



Training results
Metric curves of MSE model

✓⃝ Met good 
benchmarks
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✓⃝ Met good 
benchmarks

✓⃝ Met good 
benchmarks

✓⃝ Met benchmarks but 
slower than TC model

✓⃝ Met good 
benchmarks



Training results
Metric curves of TC model
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Training results
Loss curves

!⃝ Early convergence
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Test results
Quantitative metrics

MSE model TC model
MSE 

★ Lower is better
0.0001 ★ 0.0326

PSNR 
★ Higher is better

45.1848 dB ★ 14.8740 dB
SSIM 

★ Higher is better
0.9633 ★ 0.0162

TC 
★ Lower is better

0.0001 0.0000 ★
TV 

★ Lower is better
148.1984 ★ 239.4765
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Unified loss function
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TC  
model

MSE+TC 
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Training results
Metric curves of Unified model
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Test results
Quantitative metrics

MSE model TC model Unified model
MSE 

★ Lower is better
0.0001 ★ 0.0326 0.0001 ★

PSNR 
★ Higher is better

45.1848 dB 14.8740 dB 46.9794 dB ★
SSIM 

★ Higher is better
0.9633 0.0162 0.9692 ★

TC 
★ Lower is better

0.0001 0.0000 ★ 0.0001
TV 

★ Lower is better
148.1984 239.4765 141.8375 ★



Test results
Qualitative inspection

Predicting one future time step 
Based on past 35 images

Ground truth MSE model TC model Unified model



Test results
Qualitative inspection

Unified model

Future time steps

TC model

MSE model



Unified Loss Function 
A unique approach by blending 

MSE and TC as a single loss 
function

Predicting future plant growth appearances with 
Multimodal Convolutional Long Short-

Term Memory

Recap

Model architecture
Time Distributed

Normalization

Reshape

Lambda

Concatenation

3D Convolution

Multimodal learning

ConvLSTM MSE 
+TC

Unified MSE + TC 
Surpasses other models with slightly 
better train & test results

TC
Temporal Consistency 
Excels smoothness in changing frames 
of plant appearance

MSE Mean Squared Error 
Excels image quality

Preprocessing

Multimodal architecture



Limitations
!⃝ Dataset lacks diversity in plant images 

The causal of early convergence during model training

!⃝ Dataset lacks plant images grown in different external conditions 
The causal why multimodality feature remain untested



Recommendations

✓⃝ Continue collecting data (i.e., add more sequences)

For succeeding researchers,

✓⃝ Expand the dataset with other plant types (i.e., beyond lettuce)

✓⃝ Grow them in different external conditions (e.g., cooler temperatures)

Explore other techniques that help solve the weaknesses found in 
current models (e.g., blurry predictions)

✓⃝
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YOLOv8 Detectron2Training images



Current farming practice
The problem

Investigating Deep Learning and Computer Vision 
for Predicting and Simulating Plant Growth Structures: 
Laying the Groundwork for Digital Twins in Agriculture

Vegetation is one of our primary sources of food. Crops grow in response to 
external conditions around them. A change in pH level, for instance, can influence 
their growth. We rely on farmers to grow and harvest them. Modern farming 
practices like vertical farming allow crops to grow in controlled environments, 
enabling farmers to manipulate external conditions such as pH levels. However, 
their decisions might not always be favorable to the crops. Applying too little or too 
much configuration can result in healthy or unhealthy crops. Crops can become 
damaged or experience stagnated growth, leading to reduced yields and resource 
wastage. It’s risky, inefficient, and unsustainable.

John Ivan T. Diaz, Craig Joseph B. Goc-ong, Kaye Louise A. Manilong, Alvin Joseph S. Macapagal, Philip Virgil B. Astillo*
Department of Computer Engineering, University of San Carlos

We envision a future in farming practices where farmers use digital twins 
to guide them in their decision-making. A digital twin is defined as a digital 
replica of a physical counterpart. It mimics the behavior and appearance of 
an object, such as crops. Farmers first apply experimental decisions to the 
digital twin. Then, the digital twin mimics the crop’s response based on those 
decisions. As a result, farmers receive insights and use them to make informed 
decisions on their real crops. This leads to no resource wastage, healthier 
crops, and higher yields. It redefines modern farming practices to be more 
sustainable and efficient, ultimately benefiting mankind and the planet.

Our Vision
Solution

The Technological Impacts

Our Foundational Contributions

Features

A small replica of a hydroponic vertical farm with cameras and sensors to collect plant growth data.

Promotes
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INDUSTRY, 
INNOVATION, AND 
INFRASTRUCTURE

RESPONSIBLE 
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Developing a Data Collection Platform

Plant images are 
captured in 

Stereo Vision

Images and sensor 
data are captured 
periodically using 

Arduino and C, and 
managed using 

Python and MySQL

Plants grow on 
top of rotating lazy 
susans to capture 

all four sides of their 
appearance

Investigating Segmentation Architectures Trained Solely for the Plant Class
Correct segmentation of plant objects positively affects succeeding phases such as 3D modeling.

YOLOv8 and Detectron2 are the initial architectures chosen for comparison.

Farmers can make informed agricultural decisions

Drives healthier crops and higher yields Entrepreneurial Opportunities for Developers

Promotes Sustainable and 

Efficient farming practices

Metric Test A Test B Test C
YOLOv8 Detectron2 YOLOv8 Detectron2 YOLOv8 Detectron2

Box AP/50 0.850 0.870 ★ 0.830 0.840 ★ 0.830 ★ 0.740
Mask AP/50 0.840 0.880 ★ 0.830 ★ 0.800 0.830 ★ 0.730
Box Loss 0.400 0.180 ★ 0.360 0.190 ★ 0.390 0.390
Mask Loss 0.800 0.110 ★ 0.660 0.110 ★ 0.810 0.150 ★
Train Time 1.400 hrs ★ 1.590 hrs 1.570 hrs ★ 1.920 hrs 0.870 hrs ★ 2.020 hrs
System RAM 5.500 GB 4.600 GB ★ 5.900 GB 3.300 GB ★ 4.900 GB 4.000 GB ★
GPU RAM 9.200 GB 3.500 GB ★ 9.200 GB 3.300 GB ★ 5.200 GB 2.500 GB ★
Disk Usage 33.100 GB ★ 35.900 GB 33.300 GB 33.200 GB ★ 33.200 GB ★ 35.900 GB

Train results
★ Better result

The dataset comprise over 1,000 diverse plant images. Epoch sizes are 100, 75, and 50 (Tests A to C). Batch sizes are 16, 8, and 3. Worker 
counts are 8, 6, and 4. The initial and final learning rates are constant across all tests, at 0.01 and 0.001, respectively.

Decreasing hyperparameters

Strengths Weaknesses
YOLOv8

Fast training 
speed
Stable accuracy 
with fewer 
epochs
Low disk storage 
usage
Effective 
with smaller 
hyperparameters

Slightly lower 
segmentation 
accuracy
High GPU RAM 
consumption 
with larger sets
Higher RAM 
consumption

Detectron2
Higher 
segmentation 
accuracy
Lower GPU RAM 
usage
Low RAM 
consumption
Significant 
accuracy gains 
with higher 
hyperparameters

Slower training 
speed
High disk usage
Accuracy greatly 
affected by fewer 
epochs
Poor 
performance 
with minimal 
hyperparameters

⊗

⊗

⊗

⊗

⊗
⊗

⊗

✓⃝

✓⃝

✓⃝

✓⃝

✓⃝

✓⃝

✓⃝

✓⃝
Methodology 

flowchart
AnnotationTrain Dataset

Test Dataset

Model Training

Model Evaluation

Trained model

Annotation

Training 
phase

Testing 
phase

Proposing Unified Loss Function for Model Training
Three loss functions are explored: Mean Squared Error, Temporal Consistency, and one that combines both. The unified loss 

function showed slightly better training and testing results than the other two in predicting images of plant appearance.

★ Better result
Test results

Metrics are Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural 
Similarity Index (SSIM), Temporal Consistency (TC), and Total Variation (TV).

Metric MSE model TC model Unified model 
(MSE+TC)

MSE 0.0001 ★ 0.0326 0.0001 ★

PSNR 45.1848 dB 14.8740 dB 46.9794 dB ★

SSIM 0.9633 0.0162 0.9692 ★

TC 0.0001 0.0000 ★ 0.0001

TV 148.1984 239.4765 141.8375 ★

Predicting the 10th future time step based on 
the past 35 images. The same configuration of 
external conditions from the dataset is used to 
generate these predictions. Window size is 30. 

Stride is 1.

Ground truth MSE model

TC model Unified model 
(MSE+TC)

Sample image

Evaluation 
process

Compare
w/ metrics

Actual image
from the dataset

Predicted image
by the model

Preprocessing pipeline

Methodology flowchart

Preprocessing Preprocessing

Train Dataset

Model Training

Model EvaluationTrained model

Test Dataset

Training phase Testing phase

The dataset contains 64 plant growth sequences 
captured at 12-hour intervals. The plant used is lettuce, 

but the model is scalable to other plant types.

Investigating Computer Vision Techniques to Create a 3D Model of the 
Plant from Constrained Stereo Images

Developing a Multimodal Convolutional Long Short-Term Memory 
Architecture for Predicting Future Plant Appearance

Multimodal learning
It learns how plants look under a given set of external conditions (e.g., 
ambient temperature), thus gaining the ability to predict future plant 

appearances based on those conditions.

Design sketch Actual setup

Model architecture

Plant appearances
Images

External conditions
Numerical data

Future plant 
appearances

Images

ConvLSTMs

Normalization

Time Distributed

Reshape

Lambda

Concatenation

3D Convolution

Pre-
processing

Multimodal 
Convolutional 
Long Short-

Term Memory 
Architecture

Recommendations
For researchers who believe in the vision and wish to contribute to its pursuit:

Continue collecting data. Grow more plants. Expand to other plant types, and grow them under different external conditions.
Explore data collection techniques that capture top and bottom plant views and yield denser point clouds.
Explore deep learning techniques that can address weaknesses found in current models, such as blurriness in predictions.
Expand the 3D modeling methodology to include quantitative evaluation.
Implement an automatic point cloud merging technique in 3D modeling to replace the current manual process.
Continue future R&D stages, such as developing augmented reality experiences to view 3D plant models in physical space.

✓⃝
✓⃝
✓⃝
✓⃝
✓⃝
✓⃝

The challenge is to transform 2D stereo images, captured around an object at 90-degree horizontal rotations, into a 3D model.

Segmentation → Resize → Normalization 
→ Sequence Length Standardization 

→ Augmentation

Preprocessing

Sample of whole process

Front stereo image Right stereo image Left stereo image
Ambient 

temperature Moisture pH level LuminosityBack stereo image

Plant's past appearances
Images

External conditions associated
Numerical data

Plant's future appearance
3D model

90° horizontal rotation 180° horizontal rotation 270° horizontal rotation

CALIBRATION MAP

SEGMENTATION MODEL

PREPROCESSING

MULTIMODAL CONVOLUTIONAL LONG SHORT-TERM MEMORY MODEL
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Techniques 
used

The techniques mentioned use OpenCV and Open3D libraries in Python. Point cloud generation uses 3D reprojection. Point cloud refinement uses the .transform function with statistical and radius outlier 
removal. Point cloud registration uses the .translate, .rotate, .scale, and .transform functions. Mesh generation uses the Ball Pivoting Algorithm.
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Current farming practice
The problem

Investigating Deep Learning and Computer Vision 
for Predicting and Simulating Plant Growth Structures: 
Laying the Groundwork for Digital Twins in Agriculture

Vegetation is one of our primary sources of food. Crops grow in response to 
external conditions around them. A change in pH level, for instance, can influence 
their growth. We rely on farmers to grow and harvest them. Modern farming 
practices like vertical farming allow crops to grow in controlled environments, 
enabling farmers to manipulate external conditions such as pH levels. However, 
their decisions might not always be favorable to the crops. Applying too little or too 
much configuration can result in healthy or unhealthy crops. Crops can become 
damaged or experience stagnated growth, leading to reduced yields and resource 
wastage. It’s risky, inefficient, and unsustainable.

John Ivan T. Diaz, Craig Joseph B. Goc-ong, Kaye Louise A. Manilong, Alvin Joseph S. Macapagal, Philip Virgil B. Astillo*
Department of Computer Engineering, University of San Carlos

We envision a future in farming practices where farmers use digital twins 
to guide them in their decision-making. A digital twin is defined as a digital 
replica of a physical counterpart. It mimics the behavior and appearance of 
an object, such as crops. Farmers first apply experimental decisions to the 
digital twin. Then, the digital twin mimics the crop’s response based on those 
decisions. As a result, farmers receive insights and use them to make informed 
decisions on their real crops. This leads to no resource wastage, healthier 
crops, and higher yields. It redefines modern farming practices to be more 
sustainable and efficient, ultimately benefiting mankind and the planet.

Our Vision
Solution

The Technological Impacts

Our Foundational Contributions

Features

A small replica of a hydroponic vertical farm with cameras and sensors to collect plant growth data.
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Developing a Data Collection Platform

Plant images are 
captured in 

Stereo Vision

Images and sensor 
data are captured 
periodically using 

Arduino and C, and 
managed using 

Python and MySQL

Plants grow on 
top of rotating lazy 
susans to capture 

all four sides of their 
appearance

Investigating Segmentation Architectures Trained Solely for the Plant Class
Correct segmentation of plant objects positively affects succeeding phases such as 3D modeling.

YOLOv8 and Detectron2 are the initial architectures chosen for comparison.

Farmers can make informed agricultural decisions

Drives healthier crops and higher yields Entrepreneurial Opportunities for Developers

Promotes Sustainable and 

Efficient farming practices

Metric Test A Test B Test C
YOLOv8 Detectron2 YOLOv8 Detectron2 YOLOv8 Detectron2

Box AP/50 0.850 0.870 ★ 0.830 0.840 ★ 0.830 ★ 0.740
Mask AP/50 0.840 0.880 ★ 0.830 ★ 0.800 0.830 ★ 0.730
Box Loss 0.400 0.180 ★ 0.360 0.190 ★ 0.390 0.390
Mask Loss 0.800 0.110 ★ 0.660 0.110 ★ 0.810 0.150 ★
Train Time 1.400 hrs ★ 1.590 hrs 1.570 hrs ★ 1.920 hrs 0.870 hrs ★ 2.020 hrs
System RAM 5.500 GB 4.600 GB ★ 5.900 GB 3.300 GB ★ 4.900 GB 4.000 GB ★
GPU RAM 9.200 GB 3.500 GB ★ 9.200 GB 3.300 GB ★ 5.200 GB 2.500 GB ★
Disk Usage 33.100 GB ★ 35.900 GB 33.300 GB 33.200 GB ★ 33.200 GB ★ 35.900 GB

Train results
★ Better result

The dataset comprise over 1,000 diverse plant images. Epoch sizes are 100, 75, and 50 (Tests A to C). Batch sizes are 16, 8, and 3. Worker 
counts are 8, 6, and 4. The initial and final learning rates are constant across all tests, at 0.01 and 0.001, respectively.

Decreasing hyperparameters

Strengths Weaknesses
YOLOv8

Fast training 
speed
Stable accuracy 
with fewer 
epochs
Low disk storage 
usage
Effective 
with smaller 
hyperparameters

Slightly lower 
segmentation 
accuracy
High GPU RAM 
consumption 
with larger sets
Higher RAM 
consumption

Detectron2
Higher 
segmentation 
accuracy
Lower GPU RAM 
usage
Low RAM 
consumption
Significant 
accuracy gains 
with higher 
hyperparameters

Slower training 
speed
High disk usage
Accuracy greatly 
affected by fewer 
epochs
Poor 
performance 
with minimal 
hyperparameters
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Proposing Unified Loss Function for Model Training
Three loss functions are explored: Mean Squared Error, Temporal Consistency, and one that combines both. The unified loss 

function showed slightly better training and testing results than the other two in predicting images of plant appearance.

★ Better result
Test results

Metrics are Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural 
Similarity Index (SSIM), Temporal Consistency (TC), and Total Variation (TV).

Metric MSE model TC model Unified model 
(MSE+TC)

MSE 0.0001 ★ 0.0326 0.0001 ★

PSNR 45.1848 dB 14.8740 dB 46.9794 dB ★

SSIM 0.9633 0.0162 0.9692 ★

TC 0.0001 0.0000 ★ 0.0001

TV 148.1984 239.4765 141.8375 ★

Predicting the 10th future time step based on 
the past 35 images. The same configuration of 
external conditions from the dataset is used to 
generate these predictions. Window size is 30. 

Stride is 1.

Ground truth MSE model

TC model Unified model 
(MSE+TC)

Sample image

Evaluation 
process

Compare
w/ metrics

Actual image
from the dataset

Predicted image
by the model

Preprocessing pipeline

Methodology flowchart

Preprocessing Preprocessing

Train Dataset

Model Training

Model EvaluationTrained model

Test Dataset

Training phase Testing phase

The dataset contains 64 plant growth sequences 
captured at 12-hour intervals. The plant used is lettuce, 

but the model is scalable to other plant types.

Investigating Computer Vision Techniques to Create a 3D Model of the 
Plant from Constrained Stereo Images

Developing a Multimodal Convolutional Long Short-Term Memory 
Architecture for Predicting Future Plant Appearance

Multimodal learning
It learns how plants look under a given set of external conditions (e.g., 
ambient temperature), thus gaining the ability to predict future plant 

appearances based on those conditions.
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Recommendations
For researchers who believe in the vision and wish to contribute to its pursuit:

Continue collecting data. Grow more plants. Expand to other plant types, and grow them under different external conditions.
Explore data collection techniques that capture top and bottom plant views and yield denser point clouds.
Explore deep learning techniques that can address weaknesses found in current models, such as blurriness in predictions.
Expand the 3D modeling methodology to include quantitative evaluation.
Implement an automatic point cloud merging technique in 3D modeling to replace the current manual process.
Continue future R&D stages, such as developing augmented reality experiences to view 3D plant models in physical space.
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The challenge is to transform 2D stereo images, captured around an object at 90-degree horizontal rotations, into a 3D model.

Segmentation → Resize → Normalization 
→ Sequence Length Standardization 

→ Augmentation
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Techniques 
used

The techniques mentioned use OpenCV and Open3D libraries in Python. Point cloud generation uses 3D reprojection. Point cloud refinement uses the .transform function with statistical and radius outlier 
removal. Point cloud registration uses the .translate, .rotate, .scale, and .transform functions. Mesh generation uses the Ball Pivoting Algorithm.
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Our vision

Digital twins in agriculture
Empowering farmers with informed decisions. 

Promoting sustainability and efficiency. 
For humanity. For the planet.
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