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Digital Twin ?
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Persistent “TwinSim”

Credit: Natalia Alexandrov

“Digital Twin” Ecosystem
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Digital
replica
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Digital Twin
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How would my plant respond if |
change the temperature to X?
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Will growth stagnate if | change
the pH level to Y7
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Current farming practice

Direct decisions
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Our vision

Informed
decisions

Actual crop Digital Twin
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Technological impacts

. SUSTAINABLE e‘"'g ALS
Farmers can make informed DEVELOPMENT \J “un™
agricultural decisions
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Entrepreneurial opportunities
Crops for developers
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Laying the groundwork
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R&D roadmap

Hello, good morning

See your Digital Twin

Ambient
temperature

pH level

Luminosity

Data Artificial 3D Modeling Augmented User
Collection Intelligence Reality Interface

“Yo,
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In this presentation
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In this presentation

(1) Data collection process

(2) Model architecture

(3) Training and testing results
(4) Unified loss function

(5) Conclusions and recommendations
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In this presentation

(1) Data collection process
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A deep learning model that predicts
future appearances of crops with respect
to external conditions around them
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A deep learning model that predicts
future appearances of crops with respect
to external conditions around them
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Collecting data

images ¥ =&
Stereo cameras
1 Ambient temperature 25°C
o 0 pH level /.5 i
Numerical dat: o

‘ Soil moisture 50%

Sensors
Luminosity /700 lux
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Collecting data
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R&D roadmap

Data Artificial 3D Modeling
Collection Intelligence
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Imaging setup

Front stereo image
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Left stereo image Right stereo image

Back stereo imag
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Laying the Groundwork for Digital Twins in Agricultus
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g, Current farming practice Our Vision

R B The problem Solution
= \
Vegetation is one of our primary sources of food. Crops grow in response to We envision a future in farming practices where farmers use digital twins
external conditions around them. A change in pH level, for instance, can influence to guide them in their decision-making. A digital twin is defined as a digital
their growth. We rely on farmers to grow and harvest them. Modern farming replica of a physical counterpart. It mimics the behavior and appearance of
practices like vertical farming allow crops to grow in controlled environments, an object, such as crops. Farmers first apply experimental decisions to the
enabling farmers to manipulate external conditions such as pH levels. However, digital twin. Then, the digital twin mimics the crop’s response based on those
their decisions might not always be favorable to the crops. Applying too little or too decisions.As aresult, farmers receive insights and use them to make informed
| much configuration can result in healthy or unhealthy crops. Crops can become decisions on their real crops. This leads to no resource wastage, healthier
damaged or experience stagnated growth, leading to reduced yields and resource crops, and higher yields. It redefines modern farming practices to be more " A
Actual CrOp  wastage. It's risky, inefficient, and unsustainable. sustainable and efficient, ultimately benefiting mankind and the planet. Dlgltal Twir Actual crop
SUSTAINABLE g™ "% i i f=
Promotes J Farmers can make informed agricultural decisions S i
DEVELOPMENT g promotes SUStainable and @
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HUNGER INNOVATION, AND CONSUMPTION The Tech no‘ogical Impa cts Efficient faming practices

INFRASTRUCTURE AND PRODUCTION
(¢

& (X) Entrepreneurial Opportunities for Developers

Our Foundational Contributions

Developing a Data Collection Platform Investigating Seg ion Archi ures Trained Solely for the Plant Class

A small replica of a hydroponic vertical farm with cameras and sensors to collect plant growth data. Correct segmentation of plant objects positively affects succeeding phases such as 3D modeling.
'YOLOV8 and Detectron2 are the initial architectures chosen for comparison.
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Plants grow on e YOLOV8  Detectron2|YOLOV8  Detectron2|YOLOv8  Detectron O | e
top of rotating lazy External conditions periodically using BoxAP/50 _|0.850 0870 0.830 0840 0830 0740 epochs consumption
Plant images are susans to capture (e, pH level) are Arduino and C, and Mask AP/50_|0.840 0880 0830 0800 0830 0730 eneraep| Citmees
capturedin all four sides of their recorded using managed using BoxLoss _ |0.400 0180 0360 0190 0390 0390 usage ® Higher RAM
B o Jhamt Stereo Vision appearance calibrated sensors  Python and MySQL MaskLoss _|0.800 0110 0660 0110 0810 0150 © Effective e
TrainTime  [1400hrs % 1590hrs  [1570hrs %  1920hrs  |0870his % 2020 hrs with smaller
SystemRAM [5500GB  4.600GB* |5900GB  3300GB% |4.900GB  4.000GB
GPURAM _ [9200GB  3500GB* [9200GB  3300GB% 52006 2500GB Detectron2
DiskUsage [33100GB* 35900GB  |33300GB  33200GB % [33200GB % 35900GB Higher ® Siowertraining
speed
H ¥ 5 Decreasing hyperparameters accuracy © High disk usage
Developing a Multimodal Convolutional Long Short-Term Memory R o I © Lower GPURAM |® Accuracy greatly
. S izt T - Tesie oG- Batch ses : usage affected by fewer
Architecture for Predicting Future Plant Appearance ' © LowRAM epochs
consumption | ® Poor
@ Significant performance
(Train Dataset_ ) Annotation ' Model Training ~(_Trained model ) " accuracy gains | with minimal
7 2 - with higher hyperparameters
It learns how plants look under a given set of external conditions (e.g., + + Test Dataset )~ Annotation h
ambient temperature), thus gaining the ability to predict future plant - -
appearances based on those conditions. ConvLSTMs (_time Distributed )
) (e
-4 —|  Multimodal Normalization
Plant appearances ! (_tambda ) Sample of whole process
|mages Pre Convolutional
B - | ( e nation ) g i
o~ processing Fong\short Future plant Coilcatenatio Plant's past appearances External conditions associated
Jl@@u TermMemory |  appearances N ‘Numerical data
= —| Architecture i 3D Convolution
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External conditions

Amblent

Numerical data o V. + Front stereo mage Right tereo image Back stereo mage Lot steeo image tomperature  Moisture  pHlevel
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Proposing Unified Loss Function for Model Training : : :
Three loss functions are explored: Mean Squared Error, Temporal Consistency, and one that combines both. The unified loss . e C .
function showed slightly better training and testing results than the other two in predicting images of plant appearance. BEAl3 &25 ’O‘ e
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Unifiedpoint cot
Day15.5 Plant's future appearance
feshed pon ol 3D model

®

Investigating Computer Vision Techniques to Create a 3D Model of the
Plant i
y ; Depth Recommendations
= el i s o 0L - PR ENEN
images
Explore data collection techniques that capture top and bottom plant views and yield denser point clouds.
Implement an automatic point cloud merging technique in 3D modeling to replace the current manual process.

Plant from Constrained Stereo Images
The challenge is to transform 2D stereo images, captured around an object at 90-degree horizontal rotations, into a 3D model.
For researchers who believe in the vision and wish to contribute to its pursuit:

Mesh ¢ PointCloud ¢ Point Cloud 4 PointCloud Continue collecting data. Grow more plants. Expand to other plant types, and grow them under different external conditions.
Generation [k Registration Refinement Generation )

@ Explore deep learning techniques that can address weaknesses found in current models, such as blurriness in predictions.

P e ! Expand the 3D modeling methodology to include quantitative evaluation.

@

@ Continue future R&D stages, such as developing augmented reality experiences to view 3D plant models in physical space.
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Collecting data

Sequence 1
Sequence 2

Sequence 3




Preprocessing pipeline

Segmentatior
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In this presentation

(1) Data collection process
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In this presentation

(2) Model architecture
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Recent deep learning advancements
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c. ConvLSTM .
Hidden state
Hr-l

Traditional LSTM Convolutional LSTM
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Convolutional LSTM




Multimoda'! Convolutional LSTM
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Multimodal learning

¢

\ —
Plant appearances
Multimodal ’
Convolutional
LSTM :
architecture Future plant appearances

1069

External conditions
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Model architecture

Time Distributed

Convolutional LSTMs

Reshape
Lambda

_tomaiestion [ i —

Concatenation

3D Convolution
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In this presentation

(2) Model architecture
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In this presentation

(3) Training and testing results
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Evaluation

MSE TC

model model
Model trained with Model trained with
Mean Squared Error Temporal Consistency
loss function loss function
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Evaluation

model
1 N X ) 1 Is N A A o)
LMSE = N z=21 CNTRENT) Lrc = N(Tg — 1) ; g, (O = X1 = G = £m1.)]
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Evaluation

@ 0

Day 1

Actual image
from the dataset

Compare

Day 1

Predicted image
by the model
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Evaluation
Metrics

—
Mean Squared Error

Peak Signal-to-Noise Ratio

Structured Similarity Index

Day 1 Temporal Consistency Day 1

Total Variation

Actual image Jieusl nemection Predicted image
from the dataset by the model
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Evaluation
Quantitative metrics

Bad Good
Greater than O MSE 0
Below 40 dB or above 50 dB PSNR Within 40-50 dB
Lesser than 1 SSIM 1
Greater than O TC 0O
Greater than O TV 0
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Training results
Metric curves of MSE model

— Training
25 50 1 .002 500
LLJ o =>
N Z — O >
0] Epochs 100 0] Epochs 100 0] Epochs 100 0] Epochs 100 0] Epochs 100
© Met good © Met good © Met good @ Met benchmarks but © Met good
benchmarks benchmarks benchmarks slower than TC model benchmarks
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Training results
Metric curves of TC model

— Training

25 50 1

LLI o =

N Z =

> g') /'-___ g

0] Epochs 100 0] Epochs 100 0] Epochs 100
™ Did not meet good ™ Did not meet good ™ Did not meet good
benchmarks benchmarks benchmarks

G 1

.002

O
—

0

500
>
; I_
Epochs 100 0] Epochs 100
© Met good ® Slightly worse than
benchmarks MSE model
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Training results
LOoss curves

— Training — Validation

.20 0014

MSE
PSNR

0] Epochs 100 0] Epochs 100
MSE model TC model

® Early convergence
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Test resulits
Quantitative metrics

MSE model TC model
MSE 0.0001 0.0326
Lower is better
PSNR 451848 dB 14.8740 dB
Higher is better
SSIM 0.9633 0.0162
Higher is better
TC 0.0001 0.0000
Lower is better
TV 1481984 239.4765

Lower is better
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MSE

model

Model trained with
Mean Squared Error
loss function

TC

model

Model trained with
Temporal Consistency
loss function
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Unified loss function

MSE TC MSE+TC

model model model
Model trained with Model trained with Model trained with
Mean Squared Error Temporal Consistency unified MSE and TC
loss function loss function loss functions
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Training results
Metric curves of Unified model

— Training
25 50 1 .002 500
LI o =
N Z — O >
0] Epochs 100 0] Epochs 100 0] Epochs 100 0] Epochs 100 0] Epochs 100
© Similar to MSE © Slightly faster than @ Similar to MSE © Similar to MSE © Similar to MSE
model MSE model model model model
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Test resulits
Quantitative metrics

MSE

Lower is better

PSNR

Higher is better

SSIM

Higher is better

TC

Lower is better

TV

Lower is better

MSE model
0.0001
451848 dB
0.9633
0.0001
148.1984

TC model
0.0326
14.8740 dB
0.0162

0.0000

239.4765

Unified model
0.0001
46.9794 dB
0.9692
0.0001
141.8375
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Testresulits

Predicting one future time step

al K il

Ground truth MSE model TC model Unified mode
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Testresulits

MSE model -
TC model
Unified mode -

-
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Recap

Predicting future plant growth appearances with tean Squared Error
: o MSE . .
Multimodal Convolutional Long Short- Excels image quality

Term Memory

Temporal Consistency
TC Excels smoothness in changing frames

Model architecture of plant appearance

Time Distributed Unified MSE + TC
ConvLSTM - MSE Surpasses other models with slightly

Multimodal learnino

¢ 106

+1C

il ; Reshape better train & test results
Preprocessing
| lHHHHhIHMII ifi -
Unified Loss Functiol
; Concatenation A unique approach by blending
MSE and TC as a single loss
3D Convolution function
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Limitations

Dataset lacks diversity in plant images
The causal of early convergence during model training

Dataset lacks plant images grown in different external conditions
The causal why multimodality feature remain untested
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Recommendations

For succeeding researchers,

(v Continue collecting data

) Expand the dataset with other plant types
)  Grow them in different external conditions
®

Explore other techniques that help solve the weaknesses found in
current models
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R&D roadmap

Q \ By |
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Artificial
Intelligence

UNIVERSITY of SAN CARLOS

SCIENTIA*VIRTUS*DEVOTIO




R&D roadmap

Hello, good morning

See your Digital Twin

Ambient
temperature

pH level

Luminosity

Data Artificial 3D Modeling Augmented User
Collection Intelligence Reality Interface

“Yo,
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Training images ¥ YOLOvS ©6 Detectron?2
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g, Current farming practice Our Vision

R B The problem Solution
= \
Vegetation is one of our primary sources of food. Crops grow in response to We envision a future in farming practices where farmers use digital twins
external conditions around them. A change in pH level, for instance, can influence to guide them in their decision-making. A digital twin is defined as a digital
their growth. We rely on farmers to grow and harvest them. Modern farming replica of a physical counterpart. It mimics the behavior and appearance of
practices like vertical farming allow crops to grow in controlled environments, an object, such as crops. Farmers first apply experimental decisions to the
enabling farmers to manipulate external conditions such as pH levels. However, digital twin. Then, the digital twin mimics the crop’s response based on those
their decisions might not always be favorable to the crops. Applying too little or too decisions.As aresult, farmers receive insights and use them to make informed
| much configuration can result in healthy or unhealthy crops. Crops can become decisions on their real crops. This leads to no resource wastage, healthier
damaged or experience stagnated growth, leading to reduced yields and resource crops, and higher yields. It redefines modern farming practices to be more " A
Actual CrOp  wastage. It's risky, inefficient, and unsustainable. sustainable and efficient, ultimately benefiting mankind and the planet. Dlgltal Twir Actual crop
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Promotes J Farmers can make informed agricultural decisions S i
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HUNGER INNOVATION, AND CONSUMPTION The Tech no‘ogical Impa cts Efficient faming practices

INFRASTRUCTURE AND PRODUCTION
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& (X) Entrepreneurial Opportunities for Developers

Our Foundational Contributions

Developing a Data Collection Platform Investigating Seg ion Archi ures Trained Solely for the Plant Class

A small replica of a hydroponic vertical farm with cameras and sensors to collect plant growth data. Correct segmentation of plant objects positively affects succeeding phases such as 3D modeling.
'YOLOV8 and Detectron2 are the initial architectures chosen for comparison.
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P @ () . N Metric  |TeStA Test B Test C speed segmentation
e o
Plants grow on e YOLOV8  Detectron2|YOLOV8  Detectron2|YOLOv8  Detectron O | e
top of rotating lazy External conditions periodically using BoxAP/50 _|0.850 0870 0.830 0840 0830 0740 epochs consumption
Plant images are susans to capture (e, pH level) are Arduino and C, and Mask AP/50_|0.840 0880 0830 0800 0830 0730 eneraep| Citmees
capturedin all four sides of their recorded using managed using BoxLoss _ |0.400 0180 0360 0190 0390 0390 usage ® Higher RAM
B o Jhamt Stereo Vision appearance calibrated sensors  Python and MySQL MaskLoss _|0.800 0110 0660 0110 0810 0150 © Effective e
TrainTime  [1400hrs % 1590hrs  [1570hrs %  1920hrs  |0870his % 2020 hrs with smaller
SystemRAM [5500GB  4.600GB* |5900GB  3300GB% |4.900GB  4.000GB
GPURAM _ [9200GB  3500GB* [9200GB  3300GB% 52006 2500GB Detectron2
DiskUsage [33100GB* 35900GB  |33300GB  33200GB % [33200GB % 35900GB Higher ® Siowertraining
speed
H ¥ 5 Decreasing hyperparameters accuracy © High disk usage
Developing a Multimodal Convolutional Long Short-Term Memory R o I © Lower GPURAM |® Accuracy greatly
. S izt T - Tesie oG- Batch ses : usage affected by fewer
Architecture for Predicting Future Plant Appearance ' © LowRAM epochs
consumption | ® Poor
@ Significant performance
(Train Dataset_ ) Annotation ' Model Training ~(_Trained model ) " accuracy gains | with minimal
7 2 - with higher hyperparameters
It learns how plants look under a given set of external conditions (e.g., + + Test Dataset )~ Annotation h
ambient temperature), thus gaining the ability to predict future plant - -
appearances based on those conditions. ConvLSTMs (_time Distributed )
) (e
-4 —|  Multimodal Normalization
Plant appearances ! (_tambda ) Sample of whole process
|mages Pre Convolutional
B - | ( e nation ) g i
o~ processing Fong\short Future plant Coilcatenatio Plant's past appearances External conditions associated
Jl@@u TermMemory |  appearances N ‘Numerical data
= —| Architecture i 3D Convolution

270°

External conditions

Amblent

Numerical data o V. + Front stereo mage Right tereo image Back stereo mage Lot steeo image tomperature  Moisture  pHlevel
ot ﬁﬁﬁﬁ b= 0y 6o (K
+ + +
e -------- b=) @ 6o
Proposing Unified Loss Function for Model Training : : :
Three loss functions are explored: Mean Squared Error, Temporal Consistency, and one that combines both. The unified loss . e C .
function showed slightly better training and testing results than the other two in predicting images of plant appearance. BEAl3 &25 ’O‘ e
> >

CALIBRATION MAP l l

e Dataset ), /(Test Dataset ) Betterresu
o i 25° | (iQiso% (s
Ereprocessing® | @B ls"‘g Metric| MSE model | TC model U”'&iﬁjpgde‘ eyl &1 ’Oi 6

== MSE 20001 00526 0000 Ground truth  MSE model
(_UTrained model ) Model Evaluation PSNR| 451848dB 14,8740 dB 46.9794dB MORY MODEL

ting phe: SSIM 0.9633 00162 0.9692
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e 4 Eor (MSE), Peak Signal-to-Noise Ratio (PSNR) Structural 1
ity Inlox (SSM),Temporal Consisten and TtalVariaion (T (MSE+TC) Devies,
Segmentation - Resize - Normalization e P Day15.5
- Sequence Length Standardization ) a " ciowsize 3 30. Point cloud
- Augmentation
s l - ‘
Unifiedpoint cot
Day15.5 Plant's future appearance
feshed pon ol 3D model

®

Investigating Computer Vision Techniques to Create a 3D Model of the
Plant i
y ; Depth Recommendations
= el i s o 0L - PR ENEN
images
Explore data collection techniques that capture top and bottom plant views and yield denser point clouds.
Implement an automatic point cloud merging technique in 3D modeling to replace the current manual process.

Plant from Constrained Stereo Images
The challenge is to transform 2D stereo images, captured around an object at 90-degree horizontal rotations, into a 3D model.
For researchers who believe in the vision and wish to contribute to its pursuit:

Mesh ¢ PointCloud ¢ Point Cloud 4 PointCloud Continue collecting data. Grow more plants. Expand to other plant types, and grow them under different external conditions.
Generation [k Registration Refinement Generation )

@ Explore deep learning techniques that can address weaknesses found in current models, such as blurriness in predictions.

P e ! Expand the 3D modeling methodology to include quantitative evaluation.

@

@ Continue future R&D stages, such as developing augmented reality experiences to view 3D plant models in physical space.
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Investigating Deep Learning and Computer Vision
for Predicting and Simulating Plant Growth Structures: -

=L |

Luminosity

Laying the Groundwork for Digital Twins in Agriculture /

John lvan T. Diaz, Craig Joseph B. Goc-ong, Kaye Louise A. Manilong, Alvin Joseph S. Macapagal, Philip Virgil B. Astillo*
Department of Computer Engineering, University of San Carlos
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S urrent rarming practice ur vision wsiele
A The problem Solution =
Vegetation is one of our primary sources of food. Crops grow in response to We envision a future in farming practices where farmers use digital twins
external conditions around them. A change in pH level, for instance, can influence to guide them in their decision-making. A digital twin is defined as a digital
their growth. We rely on farmers to grow and harvest them. Modern farming replica of a physical counterpart. It mimics the behavior and appearance of
practices like vertical farming allow crops to grow in controlled environments, an object, such as crops. Farmers first apply experimental decisions to the
enabling farmers to manipulate external conditions such as pH levels. However, digital twin. Then, the digital twin mimics the crop's response based on those
their decisions might not always be favorable to the crops. Applying too little or too decisions.As aresult, farmers receive insights and use them to make informed
| much configuration can result in healthy or unhealthy crops. Crops can become decisions on their real crops. This leads to no resource wastage, healthier ..
=" damaged or experience stagnated growth, leading to reduced yields and resource crops, and higher yields. It redefines modern farming practices to be more e Y ' =
Actual CIroOpP  wastage. It's risky, inefficient, and unsustainable. sustainable and efficient, ultimately benefiting mankind and the planet. Dlgltal Twin Actual Crop
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Drives healthier crops and higher yields Entrepreneurial Opportunities for Developers

Our Foundational Contributions

Developing a Data Collection Platform Investigating Segmentation Architectures Trained Solely for the Plant Class

A small replica of a hydroponic vertical farm with cameras and sensors to collect plant growth data. Correct segmentation of plant objects positively affects succeeding phases such as 3D modeling.
YOLOVv8 and Detectron2 are the initial architectures chosen for comparison.
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Our vision

Digital twins in agriculture

Empowering farmers with informed decisions.
Promoting sustainability and efficiency.
For humanity. For the planet.
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Plant Growth Structures through Multimodal
Convolutional Long Short-Term Memory:
Laying the Groundwork for Digital Twins in
Agriculture
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